Wave propagation across acoustic / Biot’s media: a finite-difference method
نویسندگان
چکیده
Numerical methods are developed to simulate the wave propagation in heterogeneous 2D fluid / poroelastic media. Wave propagation is described by the usual acoustics equations (in the fluid medium) and by the low-frequency Biot’s equations (in the porous medium). Interface conditions are introduced to model various hydraulic contacts between the two media: open pores, sealed pores, and imperfect pores. Well-possedness of the initial-boundary value problem is proven. Cartesian grid numerical methods previously developed in porous heterogeneous media are adapted to the present context: a fourth-order ADER scheme with Strang splitting for time-marching; a space-time mesh-refinement to capture the slow compressional wave predicted by Biot’s theory; and an immersed interface method to discretize the interface conditions and to introduce a subcell resolution. Numerical experiments and comparisons with exact solutions are proposed for the three types of interface conditions, demonstrating the accuracy of the approach. AMS subject classifications: 35L05, 35L50, 65N06, 65N85, 74F10
منابع مشابه
Solution of propagation of acoustic-gravity waves in the atmosphere using finite difference method of order two
Investigating waves propagation’s equation in the atmosphere is one of the important and widely used issues in various sciences, which has attracted many researchers. A type of propagating waves is an acoustic-gravity wave. These type of waves have a lot of stationarity properties and can be propagate to a high altitude in the atmosphere. The equation of acoustic-gravity wave propagation is a h...
متن کاملMPI- and CUDA- implementations of modal finite difference method for P-SV wave propagation modeling
Among different discretization approaches, Finite Difference Method (FDM) is widely used for acoustic and elastic full-wave form modeling. An inevitable deficit of the technique, however, is its sever requirement to computational resources. A promising solution is parallelization, where the problem is broken into several segments, and the calculations are distributed over different processors. ...
متن کاملThe application of the perfectly matched layer in numerical modeling of wave propagation in poroelastic media
The perfectly matched layer (PML) was first introduced by Berenger as a material absorbing boundary condition (ABC) for electromagnetic waves. In this paper, a method is developed to extend the perfectly matched layer to simulating seismic wave propagation in poroelastic media. This nonphysical material is used at the computational edge of a finite-difference algorithm as an ABC to truncate unb...
متن کاملSpectral-element simulations of wave propagation in porous media
S U M M A R Y We present a derivation of the equations describing wave propagation in porous media based upon an averaging technique which accommodates the transition from the microscopic to the macroscopic scale. We demonstrate that the governing macroscopic equations determined by Biot remain valid for media with gradients in porosity. In such media, the well-known expression for the change i...
متن کاملAxisymmetric Scaled Boundary Finite Element Formulation for Wave Propagation in Unbounded Layered Media
Wave propagation in unbounded layered media with a new formulation of Axisymmetric Scaled Boundary Finite Element Method (AXI-SBFEM) is derived. Dividing the general three-dimensional unbounded domain into a number of independent two-dimensional ones, the problem could be solved by a significant reduction in required storage and computational time. The equations of the corresponding Axisymmetri...
متن کامل